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The approach of Yu. L. Klimontovich to supergrid description of turbulent motions 
is developed. An illustration of its effectiveness is presented. 

I. The second moments of pulsational quantities, obtained by time-averaging convective 
terms in the starting transport equations, are as a rule closed with the help of gradient 
relations, in which the coefficients of turbulent diffusion of momentum and heat are written 
in accordance with the well-known semiempirical models k--L--<T'2>, k--e--<T"> [i]: 

k2 ~ ~T 

' Pr~ 

It is obvious that here the question of the spatial scales of fluctuations of the ran- 
dom quantities is ignored. In addition, it is not clear how on the basis of this approach 
the turbulence is modelled, if the mathematical description of the flow is given in 
Lagrangian variables, as, for example, in the ALE method [2]. There is also a different 
method - effective regularization of transport equations in the presence of gas-thermodynamic 
fluctuations [3-5]. This method consists of the following. Langevin random sources, whose 
existence is postulated, are introduced into the equations. The second moments of the 
Langevin forces are 6-correlated in both time and space, and the intensity in the relations 
for the moments of these forces is expressed in terms of one-time correlation functions of 
the fluctuations of the velocity and temperature. Next, replacing the 6 function by a 
Gaussian distribution and carrying out some calculations, the following expressions were 
obtained in [4] for the "diffusion" coefficients: 

2 2 ], (1) [ 1+ < > 
/ ; (grad( ( T )) )2 j, 

aeff-- a k 1 -~ (6T~ph)2 (2) 

where s h(gph ~ L) is  a p h y s i c a l l y  small  parameter .  Within the  volume Vph(Vph~ s ; h )  
small d~tails of the motion, which cannot be observed, are excluded; ui, j is the strain- 
rate tensor; 6U~p h, 6T~p h are the deviations of the velocity and temperature averaged over the 

volume Vph from the average phase values. 

2. In the relation (i) the variance 0.5 <(6U~ph)2> is the kinetic energy of the sub- 

grid turbulence k, while the expression v(ui~j) 2 is identical to the expression for the rate 
of viscous dissipation E. The variance ((6TVph)2> in (2) can be represented as the square 

of the subgrid pulsations of the temperature <T'=>. In so doing it is assumed that k, s, 
and <T'2> obey the well-known differential transport equations of the k--e-- ( T"> model 
with the use of the standard set of constants [3, 6-8]. 

The size of the control cell of the finite-difference grid is chosen as the small scale 
s A ~ s (A << L). In this case the relations (i) and (2) assume the form 

8 
Vef f ~ V @-A 2 -  2k ' 
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Fig. 1 Fig. 2 

Fig. i. Profiles of the average velocity and the 
average temperature differential: i) k-s 
2) k-e-<T'2>-A; the dots are the experimental 
values of [9]. 

Fig. 2. The distribution of velocity and temper- 
ature pulsations. The notation is the same as in 
Fig. I. 

A~(gra d <T>) 2 ] 
a - , ,=a  1 ~ T,~ , eff ' < > 

and there is no need to introduce the turbulent Prandtl number. 

We note that on the basis of this approach it is possible to construct a model of tur- 
bulence of the type k--A--<T'~> containing two differential transport equations: for 
the kinetic turbulent energy and for pulsations of the temperature with effective diffusion 
coefficients taken directly in the form (i) and (2). The dissipative terms in the equa- 
tions for k and <T'2> can be obtained from the assumption that the Kolmogorov microscale 
characterizing small vortices is "artificially" expanded up to the dimensions of the control 
cell of the finite-difference grid: ~T3/A 4 and aT3/A 4. 

3. The relations presented were employed to solve the problem of the propagation of a 
flat, submerged, turbulent jet of air. The published [9] experimental data were compared 
with the data computed using the standard k--t-- < T"> and k--e-- < T"> models and 
using the k--A-- <T'~), k--e--<T'~)--A models. The comparisons of the experimental 

distributions of pulsations with calculations according to the k--i--<T"> and the 

"supergrid" k--A-- <T'2> models of turbulence using the standard constants [6] turned 
out to be unsatisfactory, and for this reason the results of calculations based on the 

k--s-- < T"> model and the "supergrid" k--g-- i T'~> --A model modified according to 
Yu. L. Klimontovich are demonstrated below. 

As one can see from Fig. I, both models predict the experimental data with a high 
degree of accuracy. 

The results of comparison of the dimensionless pulsations of the velocities in the 
transverse section of the jet are shown in Fig. 2a. The level of pulsations computed 

according to the standard k--e-- <T '~) model with the help of the relation (<u'2>)11z~ 

( 2 )  1/2 
--~ k agrees well with experiment, while the values of the pulsations of the velocity, 
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calculated in the same manner using the k --~-- < T'~> --A model, are somewhat lower than 
the experimental values. 

At the same time both models permit obtaining good agreement with the experimental 
distributions of the temperature pulsations (Fig. 2b). 

4. In this work the turbulence is modeled with the help of "dissipative" methods 
developed in [4, 5] for describing thermodynamically irreversible processes. We shall 
give some arguments confirming that they are analogous to the methods of subgrid modeling 
of turbulence [10-12]. In the inertial interval the gradient of the velocity for vortices 
of size % is of the order of si/3%-2/3, where e is the dissipation of energy per unit time 
and unit mass. The velocity gradient increases as ~ decreases and becomes so large that 
molecular viscosity cannot be neglected. This occurs when ~ ~ D, where ~ = (v3/g) I/4 is the 
Kolmogorov microscale. The velocity gradient 8ui/Sx j in the smallest vortices should have 
a magnitude that is required for viscous dissipation, i.e., 2vu i ~u i ~ = v3/q 4. Further, 

�9 , �9 ' J  . ' ~  o . 

if it is assumed that the mznzmum scale resolvable for vortzces, wzthzn whzch pulsatzons are 
neglected, is the size of the cell of the finite-difference grid, then the well-knownsimple 
subgrid model of Deardorff is obtained: v T ~ A2(2ui,jui,~) I/2, where the "dissipative" 
scale is artificially expanded up to the sizes of the gri~ cell [12]. A similar approach 
is studied in this work. The effect of the 6-correlated Langevin sources is "smeared," over 
some physical scale, equal to the size of the control cell of the grid. In this case we can 
also say that the dissipating turbulent vortices are artificially expanded to the minimum 
resolvable spatial scale. Here the well-known expression v T = C~k2/r is not employed, but 
rather the "subgrid" formula v T = ~2r which does not contain C~, is employed. A similar 
approach was specially tested in calculations of jets in order to demonstrate its effective- 
ness together with the effectiveness of the standard K--e--<T"> model well-known for para- 
bolic flows. The possibilities of such "supergrid, irrational" description of turbulent 
flows will be demonstrated by further investigations, associated with the search for an opti- 
mal collection of model constants, the absence of which could be a justification for the 
discrepancy between the computed and experimental data presented in Fig. 2a. 

NOTATION 

u, velocity along the flow; T, temperature; AT = T - T~, temperature differential; u' 
and T', velocity and temperature pulsations; ~ and a, coefficients of kinematic viscosity 
and thermal diffusivity; Pr, Prandtl number; k, kinetic energy of turbulence; r rate of 
dissipation of k; y, transverse coordinate; L, geometric dimensions of the flow; and b, 
half-width. The indices ~ and m indicate that the value of the quantity in the exterior 
flow or on the axial line is to be taken; the indices u, t and T indicate that the quantity 
refers to the velocity, the temperature, or the turbulent characteristic, respectively. 

LITERATURE CITED 

i. B. E. Launder and D. B. Spalding, ZAMM, 56, 219-221 (1976). 
2. S. Hert, Numerical Methods in Fluid Mechanics [Russian translation], Moscow (1973), 

pp. 156-164. 
3. L. D. Landau and E. M. Lifshits, "On hydrodynamic fluctuations," in: Collected Works 

of L. D. Landau [in Russian], Vol. 2, Moscow (1969), pp. 376-378. 
Yu. L. Klimontovich, Statisticl Physics [in Russian], Moscow (1982). 
I. Prigozhine, From Being to Becoming [Russian translation], Moscow (1985). 
V. Kal'man (ed.), Computational Methods for Turbulent Flows [in Russian], Moscow 
(1984), pp. 227-268. 

7. D. B. Spalding, Chem. Eng. Sci., 26, 95-107 (1971). 
8. V. I. Golovichev, M. A. Gorokhovskii, and V. P. Kashkarov, Inzh.-Fiz. Zh., 44, No. 6, 

933-942 (1983). 
9. B. F. Ramaprian and M. S. Chandrasekara, Theoretical Foundations of Engineering Cal- 

culations [in Russian], Vol. 102, Moscow (1985), No. 2, pp. 177-185. 
J. W. Deardorff, J. Fluid Mech., 41, 453-467 (1970). 
J. W. Deardorff, J. Comput. Phys., 2, No. i, 120-133 (1971). 
J. D. Ramshaw, Informal Report, Los Alamos Scientific Laboratory Report LA-7955-MS 
(1979). 

. 

5. 
6. 

i0. 
ii. 
12. 

761 


